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ABSTRACT

With the increasing sophistication and automation of cyberattacks, simulation and emulation
environments that replicate attack processes in virtual settings have become essential for evaluating
defensive strategies. Moreover, research has been conducted on the application of (RL) in cyber
ranges to enable autonomous penetration testing. This study provides a comparative analysis of
the characteristics and limitations of RL-based cyber-attack simulation environments, including
Network Attack Simulation, Cyber Battle Simulation,and the Autonomous Pentesting framework
based on Reinforcement Learning, as well as emulation environments such as Cyber Game for
Intelligent Learning and Pentesting Gym. In addition, this paper summarizes the characteristics of
hybrid environments, including Network Attack Simulation and Emulation and the Generalizable
Autonomous Pentesting Framework. In particular, the analysis includes structural differences,
Markov decision process design, scalability to large-scale networks, and generalization capability
across diverse scenarios. In the future, providing high-fidelity learning environments that closely
resemble real networks will require integrated training architectures that combine simulation and
emulation, along with expansion toward multi-agent environments.

KEYWORDS Cyber Attack, Emulation, Generalization, Penetration Testing, Reinforcement Learning,

Scalability, Simulation

* DOLI: https://doi.org/10.22648/ETR1.2025.].410108
R =E2 20220 FRE(IHEGVEPEZAR)Y HAoR FJHBATVEXSTAEY LS vrof +=H A+A[No. 2022-0-
00961, A7171315 Al 7|9k AtolH] Z+F A 7] 7.

22 BB-2 HARY

HO|RZX+HAZK| Z740]| M2} 0|8t 2= UHLICE ©2026 St=EHRSAATH




H

H 2}

=

#7go] S

o] ok UA| VES A

AE Hestr]

18

)
gl

[9]. ellEeold 782 AA| &G AAe 54 =7+

TH7,8]. AlEdolAd 42 71 HESH A 2o
7R AtolH 224 of & o]

o} Al B o] e

oF
Qf

P
T

H4
S

R

=
R

o
1] 474 of2l9)

°

ol Yol 1L Qlth2]. o] & 918 7
WA o= s

Ap-58tet A 58S O R AAT, FAl] B
ST9E, oT P 2= AtolH

I M2

ﬂﬁm.uo_w_d%ﬂ%cmwamuaﬁmﬂﬂ%%e% TP T T TN
R MR KO oo m T O OGS
TR BT W H o M TR T ooy B %%%ﬂm%
BB W RETYPT b T oM whe T g
FEXFEo B RBE ©Lromo g 5 N @ PR
TES T BN Ty T T oo W
R - X o o ~ ol
TR BT T R oo o T o
fo ® o T oo TE R oo TS m AR Ay Ty L
TN A o PRy %ot - T W o U g O T
o - B :.: X MMO;O AH.A L
oy B o o TE W ' T = o oF W of B -
R B LR T R T e B P e
oo m e N g B o o R foth e o
I T S i < e < TR T < TR
-~ 8 =N oy K T E LK M % oo & A
%@ﬂ‘A.ﬂwmuﬂ%ﬂninoﬂ%ﬂﬁh T o7 R
L.Ez%ﬂv@@ﬂﬂdﬁﬂwﬁﬂﬂﬂaﬁ T W o TR
TRTRY g5 R Lo e Pl oy b
T T e R RRTH B RN
PRTHD gz TR ®ITEDT 5o @b
< W e W m SNy R PAEA g omowm W
oo 4 T W oo H " 1 r RN Ve T R s M
| A Jom oA L R S S e b o .
TETL EYURLIIAETEEILILLT
M N T 0 N R R ot m B A oy w
ﬂHMWﬁ_MM ao.,_m.u_mﬁoﬁﬁ,mm_uﬂﬁoo_EﬂHQ,mEJmM%HMolo
wm%uuu% mﬂu_uamﬁ%%ﬁmmﬁuo_iEmeé.aogﬂi%
I i w oW Ho L TR RN K NO
ol A A_Ho__:ﬂwmmw,%%émciﬂ%wg%wyw
NEmET T ARTRE R e N oo oq
oo e Ry o o BT o] B R ow g on] o
omood W m T R ST w R TN g op o
P = AT W TR ol BN
E_].oon_om_nvlﬂl@wl7MM ,q_OIﬂﬂ,.kl aﬁ_vtjl}ﬁwroao.vﬁe
Gcolay N A U R A I
— = lo ] —_— I3 U AYY
A S NS SR . TR ol SR g
ezt lelarle® ey Ry
.—A_] —_— " 2= )
iztA@Lfmﬂﬂme_amaw_mﬁ%ﬂixﬁwmﬂe_o“xﬁ%
o TR ro Pt romwbygdggx
T P X O Py g R Py T TR Bk © oA
AR Yg T LT TN @E T o™X W TP
™ on oW H oMo B OH NPT Mo T od o T W

3

S|
o

ol &#E JIE &

o
=

J[gk Aol ZH Al=2f|01d 2 o

FA
=

S
ot

}

3

F

2
o

/

Q

PS|
=

AtolH] g Q1o

L

R

o



1L, ALo|] 224 g0 M 2t

B ZolM= AtolH 34 AlEo] a9 S
e etal T2 Ql Aeets 7N AtolH 34 Al
E0] 4 2791 Network Attack Simulation(NASim)
[13], Cyber Battle Simulation(CyberBattleSim)[14] 1
2] 31 Autonomous Pentesting framework based on
Reinforcement Learning(APRIL)[15]S T4 0.2 7}

73] 5RY SAE AT

e

il

s

1%

5 ehgstel S AT o AT

2. MolH] S Al Eg|0]d vl gl

2.1 Network Attack Simulation

88 )N Ao]H 37 AlBeold AT
7ol AA HEFAY BHHS EEHOR A
@sh7] oGk Aokel EAstol BastE 7by
2 373 [16,17) 5] A9 gik. o] = 2ls) 2]
FES LS W AE SIS AEH

3
[
il
1. Ajo|H| 2 A| 20| M IR = o 24E& FHAA Schwartz 5[9]& NASimS A
RFsIITE NASimE F & 714 578 HES
Atolv] 34 Algdold &2 Al 34 3 I BAEE BAst] JAE HAE S el
& 7P3ehE @0lA ARsto] Het AAEIS] 3 S AR thrA Q1 Aekehs 71N Aoy
ofdE Adslal thg M) E9E AS] 91 34 AlEolAd €4olth NASimo A= MITRE
St egolth 17 12 Al EEo] A SA 34 ATT&CK ZE| Q]9 = 7]Hke] Thafgt AU @ & A
OJHET} e E #Estal F5S st B 381 34 A2 Tactics, Techniques and Procedures
< e o Y AAAQ 25 YERdth 1 (TTr)E Seshd Pz EAF gt
10014 & 4= 3l5%0] AolH 34 AlEeold & NASime SAE, SGAA, AH| 2, e 5 U]
BoMe AFHEE AU LE 7Hle g HES  EfE A4S 3% JHE 2dstH &
AU 34 A5 RYAFSIAL HE/A EZR M, AZ R0 A S A2 2 34 GAE
A, TAE Y 075 34 Yelo] iy S F8 AT o= Aot B e At 2, 34 A
A A2l GRS FA FAL TR 4 A B FR B R SE VISR IE A A
ey
22 |
°ee
- us BAE
—

(@]
22 L2 @ R 9-0

2 s I
EEZX TTP DB

| Address ] 0s | Discovered I Compromised |

LE

Of0|2 &% Flaticon.com

a2 1 Ao 3A Al &HF2| Fstels olo|IHE

-l
of>

S

—

TXEASEEM X412 H1Z 2026'H 2€



o= Alye] Q.o ule}
NASim< %Q‘rxdfﬁ o
A 27

5a =2 ==

4 g5t %’7—1 44 35 ds —%%ﬁé}ﬁt} A

A7 T d1EE BE BE TAETA| 9 34 H
_‘|

= F7He 5 de AlEEold &3S AlEdih

NASimQJ TR T 34 AU oM HA

il
o
N
2
Y
i
4
9,‘_'4

= cloli= et gt 4
Ao AgHL

2.2 Cyber Battle Simulation
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2.3 Autonomous Pentesting framework
based on Reinforcemnt Learning
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2.1 Cyber Game for Intelligent Learning
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PODMP(Partially Observable Markov Decision Process)
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